ETH zürich

Policy-relevance of a Model Inter-comparison: Switzerland in the European Energy Transition

<u>Ambra Van Liedekerke</u>, Blazhe Gjorgiev, Jonas Savelsberg, Xin Wen, Jérôme Dujardin, Ali Darudi, Jan-Philippe Sasse, Evelina Trutnevyte, Michael Lehning, Giovanni Sansavini

31.01.2025, Disentis

EDGE

Motivation and Research Questions

• What will the Swiss electricity system in 2050 look like?

• How can we guide the energy transition towards the desired future?

Policies:

Research question

- 1. Renewable generation target
- 2. Market integration reduction
- 3. Winter net import limitation

What is the impact of energy policies on the Swiss power system and international interactions?

ETH zürich

Methodology

THzürich

The Models for the Model Inter-comparison

The Scenarios - selection

European developmen	t	RES target	Market integration	Net winter import limit		
Global Amb	ition	No target	Full market integration	Net winter import not constrained		
Distributed I	Energy	Target at 45 TWh/y	Reduced market Integration	Net winter import constrained at 5 TWh		
5 scenarios						
Ref	Global Ambition	No target	Full market integration	Net winter import not constrained		

Data Harmonization?

2 main philosophies on data harmonization in model inter-comparisons

- Full harmonization \longrightarrow study and describe the model features
- Partial harmonization \longrightarrow study the impact of variations in the scenarios

Results

THzürich

Installed Capacity and Annual Generation

Example scenarios

- The different model perspective leads to large differences in Ref
- Renewable generation plays a significant role in the future generation mix. The alternative is increasing imports
- The renewable target (R45) can be achieved in different ways
- Reducing the market integration with Europe (N030) or the net winter import (W05) leads to higher installed capacities

We see important differences in the spatial distribution of installed PV

Reliability and Risk Engineering

Exchanges with the neighboring countries

- The renewable target (R45) reduces the need for imports
- Reduced market integration (N030) reduces both imports and exports but has no clear impact on the net
- Limiting winter net imports (W05) affects imports and exports, and induces unfavorable trade

Reliability and Risk Engineering

	Nexus-e					EXPANSE				FEM			
Ref	0	0	0	0	0	0	0	0	0	0	0	0	- 400
	15.5	18.3	5.09	-12	149	195	2.23	-61.6	372	410	-6.83	-10.4	- 300
× N030	11.2	16.1	-7.49	38.1	57.1	67.5	23.7	115	230	233	198	105	- 200
** w05	39.3	46.1	13.9	243	137	159	68.8	229	300	329	4.3	123	- 100
	Costs of supply	CAPEX	OPEX	el. price	Costs of supply	CAPEX	OPEX	el. price	Costs of supply	CAPEX	OPEX	el. price	- 0

- Increasing the investments in renewables (R45) leads to higher system costs but lowers the electricity price
- Limiting the winter net imports (W05) and the integration with the European market (N030) leads to higher system costs and electricity prices

Costs

Example

scenarios

Operation Under Limited Winter Net Imports

٠

* Average impact of the winter net import limit on the operations of different generation technologies in the winter months

- W05 leads to increased investments and operations of PV, wind, biomass
- Hydro pumped storage operation is reduced because arbitrage on other European markets is reduced

• The winter import limit and the renewable target have the strongest influence on costs of electricity supply and electricity price

Results Robustness

All scenarios

- The renewable target leads to less efficient use of the VRES generation but reduces net imports
- The market integration reduction does not reduce net imports, but it does increase costs of electricity supply, electricity prices and curtailment
- The winter net import limitation does not lead to an increase of curtailment share

Conclusions and Future Work

Conclusion

- The renewable generation target requires important investments (+19% CAPEX) but reduces operational costs (-9%), electricity prices (-40%), and net imports (-83%). Subsidies are needed to achieve a large buildup of renewable generation.
- **Reduced market integration** negatively affects the Swiss and the European energy transition by reducing the potential benefits of trading and hence reducing the utilization of VRES while increasing the cost of electricity supply (24%).
- Limited net winter imports are feasible. However, it harms electricity trading leading to increased costs of electricity supply (increasing CAPEX by 23% and OPEX by 16%) and electricity prices (141%).

Future Work

- A third EDGE model inter-comparison will start soon! Same models but different focus.
- Investigate import dependency and security of supply under different scenarios

That's all, thanks! Questions?

Ambra Van Liedekerke – PhD candidate at RRE (ETH)

avanliede@ethz.ch

Backup slides

Costs – Absolute Variation

Nexus-e				EXPANSE				FEM				Absolute variation	
Ref	0	0	0	0	0	0	0	0	0	0	0	0	- 1400
													- 1200
R45	579.4	539.4	40	-5.543	1406	1401	5	-13.34	1206	1208	-2.017	-2.926	- 1000
N030	417.8	476.6	-58.79	17.54	538	485	53	24.85	744.5	686	58.54	29.56	- 800
													- 600
W05	1471	1362	109.4	112.1	1295	1141	154	49.63	971.5	970.3	1.271	34.71	- 400
All	1430	1406	23.4	119	1449	1406	43	6.849	1332	1351	-18.87	6.591	- 200
	Costs of supply	CAPEX	OPEX	el. price	Costs of supply	CAPEX	OPEX	el. price	Costs of supply	CAPEX	OPEX	el. price	

Costs: Mio Eur Electricity price: Eur/MWh

ETH zürich

Reliability and Risk Engineering

18.01.2024 21

Operations of a typical day

Reliability and Risk Engineering

18.01.2024 22

Curtailment

- Curtailment can be either grid-based or economical
- The renewable target (R45) leads to in increase of the absolute curtailment and the curtailment share
- Several factors contribute to the high curtailments in Nexus-e

VRES generation

Reliability and Risk Engineering

OPEX relative to the generated electricity

Renewable target subsidy

EU development	Renewable target [TWh]	Market integration [%]	Winter net import [TWh]	Nexus-e [Eur/MWh]	FEM [Eur/MWh]	EXPANSE [Eur/MWh]
GA	45	100	NC	18	29	37
GA	45	030	NC	14	28	38
GA	45	100	05	0	28	25
GA	45	030	05	0	28	27
DE	45	100	NC	28	38	36
DE	45	030	NC	0	33	34
DE	45	100	05	0	33	24
DE	45	030	05	0	33	27

Table 2: Levels of renewable subsidy for the different scenarios and models [Eur/MWh].

5 TWh winter net import limit – certificate price

EU development	Renewable target [TWh]	Market integration [%]	Winter net import [TWh]	Nexus-e [Eur/MWh]	FEM [Eur/MWh]	EXPANSE [Eur/MWh]
GA	NT	100	05	59	73	124
GA	45	100	05	59	3	42
GA	NT	030	05	63	44	123
GA	45	030	05	63	0	42
DE	NT	100	05	60	86	109
DE	45	100	05	60	17	42
DE	NT	030	05	64	76	110
DE	45	030	05	67	0	31

Table 3: Certificate price corresponding to the 5 TWh winter net import limit [Eur/MWh].

Conclusion

- The renewable generation target has a major influence on the electricity system, leading to increased VRES installed capacity and, therefore, increased CAPEX costs of about 19%. However, it also leads to reduced operational costs (-9%), electricity prices (-40%), and net imports (-83%). In general, we find that in three out of four models, the target must be enforced to achieve the expected VRES shares. This suggests that direct or indirect subsidies are needed to achieve a large buildup of renewable generation.
- We find that VRES curtailments are part of an efficient system with high VRES shares. We also observe that the renewable generation target and the limited trading lead to higher generation curtailments, while the limited net imports in winter have a less decisive impact on curtailments.
- The study shows that limiting international trading capacities has a less clear effect on the cost of electricity supply and the electricity price, showing divergent outcomes across models and scenarios. However, reduced trading capacity negatively affects the Swiss and the European energy transition by reducing the potential benefits of trading and hence reducing the utilization of VRES while increasing the cost of electricity supply.
- Finally, limiting the net winter imports leads to both a reduction of imports as well as an increase in exports to meet the target. Additional capacities are added to support exports to neighboring countries and thus maintain the 5TWh net import target. Overall, limiting the net winter imports harms electricity trading leading to increased costs of electricity supply (increasing CAPEX by 23 and OPEX by 16%) and electricity prices (141%).