From niche to mainstream: A phenomenological approach to citizen-financed photovoltaic projects

Fabienne Sierro Doctoral Candidate and Research Associate Energieforschungsgespräche Disentis, 30. January 2025

School of Management and Law

ETH zürich

The energy transition

Shift from fossil fuels to renewables

Involving individuals beyond consumption

The energy transition in Switzerland

The Energy Strategy 2050

Federal Act on a Secure Electricity **Supply from Renewable Energy Sources**

Solar power as the key pillar: 80% of the required expansion until 2035

- ➤ Currently 10 to 20% covered (Swissolar, 2024)
- > Only \sim 7% of the estimated rooftop and façade potential used (in 2022) (SFOE, 2019; Anderegg et al., 2022; Swissolar, 2024)

Ratio: 20% of 80%

Harnessing the PV potential in Switzerland

How can this potential be harnessed?

Expand large-scale PV installations

- Uncertain social acceptance (Cousse, 2021)
- Large upfront costs (Peñaloza et al., 2022)
- Grid integration (Mateo et al., 2017)

Render PV more accessible

- 60% tenants (Eurostat, 2024)
- Limited investment capacity

Citizen-financed photovoltaic (CiFi PV) projects

School in Stallikon and retirement home in Ins Source: Solarify

Geneva football stadium Source: SIG

Hippie-bus singer Dodo participates in CiFi PV Source: EWZ 5

What are citizen-financed PV projects about?

Medical-social establishment Les Baumettes, Source: City of Renens

CiFi PV is about producing renewable solar power,

- through large-scale PV installations,
- which are **co-financed** by individual participants,
- and situated outside their private premises (on rooftops or ground-mounted).

They can accelerate the energy transition, but...

In 2019: only ~2% of the produced solar power

It is necessary to shift from niche to mainstream.

Overarching research questions

- Why do individuals participate?
- Can CiFi PV appeal to the broader population and how?

Research about CiFi PV participation

Limited amount of studies

Investment behavior lens

- Market-oriented projects by energy utilities and companies
- Household as the sphere of action

EWZ marketing campaign Source: EWZ

Energy community lens

- Grassroots projects by cooperatives or associations
- Community as the sphere of action

Members of Energie Genossenschaft Schweiz Source: Energie Genossenschaft Schweiz

Main drivers of CiFi PV participation

OR

Environmental motivations

- Environmental protection
- Climate change mitigation

(e.g., Braito et al. 2017, Kalkbrenner & Roosen, 2016)

Financial motivations

• Low-risk and durable investment

9

- Attactive returns
- Diversification of portfolio

(e.g., Bourcet & Bovari, 2020, Fleiss et al., 2017)

Is there more to it?

CiFi PV participation as the phenomenon

Main hypothesis: Fragmentary knowledge due to limiting conceptual lenses

Phenomenological approach

Examine the common or shared experiences of individuals (Creswell & Poth, 2024)

- Look beyond the dominant conceptual lenses
- Study both types of projects simultaneously

Complementary lens: Energy citizenship

Emerging concept making sense of individuals' engagement in the energy transition (e.g., Lennon et al., 2025; Hamman et al., 2023; Ryghaug et al., 2018)

- Different definitions with various degrees of normativity
- Encompasses multiple spheres of action

Overarching research goals (RG)

RG 1 Identify **motivations** underlying CiFi PV participation

RG 2 Explore the relevance of the concept of energy citizenship

RG 3 Investigate the appeal and diffusion potential of CiFi PV projects

A phenomenological approach to CiFi PV participation

		*					
	Contribution I	Contribution II	Contribution III				
Project developers	RG 1, RG 2	RG 1, RG 2, RG 3	RG 1, RG 3				
Participants	Inductive qualitative approach > Interviews	Deductive, inferential statistics > Survey	Deductive, inferential statistics > Two experiments				
	Identify participation motivations	Validate motivations & explore perceived role	Examine CiFi PV projects appeal and dissemination	Potential participants (broader population)			
	Published Sierro, F. & Blumer Y. (2025), Energy Research & Social Science	Published Sierro, F. & Blumer Y. (2024), Energy, Sustainability and Society	Under review Sierro, F. & Moser, C. (Re-submitted, 2025), Energy Research & Social Science				

Contribution I: Identifying participation motivations

CiFi PV project developers (PD) CiFi PV participants (P)

Method: Inductive content analysis based on interview data Sample size: PD N = 13, P N = 18

What is it about?

• "Let the data speak": assumed and actual motivations

What are the key findings?

27 motivations across seven categories Accessibility Energy transition

Environmental concerns

Financial benefits Local value creation Participation

Personal factors

"CiFi PV is just a good thing to do!" - Various participants

The opportunity to contribute individually to accelerating the energy transition through tangible solar power projects aligned with personal values.

Contribution II: Validating and exploring role perception

CiFi PV participants

Method: Inferential statistics based on survey data Sample size: N = 510

What is it about?

- · Validate motivations and rationale, characterize participants
- Adapted and enhanced motivational attributes scale (based on Noppers et al. 2016, 2018)

What are the key findings?

Financial, environmental, local value creation and symbolic motivations as drivers: Contribute to the energy transition as an energy citizen and environmentalist.

Contribution III: Influencing factors on projects attractiveness

Potential CiFi PV participants (broader Swiss population)

Method: Inferential statistics based on experimental data Sample size: N = 807 / N = 512

What is it about?

- Explore dissemination potential and the influence of project characteristics
- Enhanced motivational attributes scale (based on Sierro & Blumer, 2024)

What are the key findings?

Financial and societal impact motivations as drivers.

Independent of project characteristics around 60% are willing to participate.

SunEnergy AG

Your participation a solar plant

Petrol station Bam

SunEnergy AG

Contribution III: Influencing factors on projects attractiveness

Potential CiFi PV participants (broader Swiss population) Method: Inferential statistics based on experimental data Sample size: N = 807 / N = 512

What is it about?

Explore dissemination potential and the influence of motivational framings

What are the key findings?

Independent of motivational framings around 60% are willing to participate.

Overall findings: Yes, there is more to it!

Motivations are multifaceted – they strongly relate to how individuals associate the energy transition with economic, ecological and social sustainability dimensions.

CiFi PV as a manifestation of energy citizenship – it is about the opportunity to individually contribute to the energy transition.

Diversity promises dissemination potential – CiFi PV can appeal to the broader population, attracting individuals with varying sociodemographic, housing, and motivational backgrounds

Key implications for practice

MakeItVisible

Only around 5% knew of CiFi PV

Demand exceeds supply

Otarget

Tenants, homeowners, and former CiFi PV participants

Key implications for policy

27

Created by Fajar Studio from Noun Project

- Explicit CiFi PV to render it visible
- Assess the impact of the recently adopted Federal Act
 - > PV installations of national interest
 - Improved energy storage conditions
 - Local Electricity Communities

ETHZÜRICH School of Management and Law

Questions, comments?

Fabienne Sierro ZHAW & ETH Zürich fabienne.sierro@zhav fabienne.sierro@zhaw.ch in fabiennesierro

References

- Braito, M., Flint, C., Muhar, A., Penker, M., & Vogel, S. (2017). Individual and collective socio-psychological patterns of photovoltaic investment under diverging policy regimes of Austria and Italy. Energy Policy, 109(July), 141–153. <u>https://doi.org/10.1016/j.enpol.2017.06.063</u>
- Bourcet, C. & Bovari, E. (2020). Exploring citizens' decision to crowdfund renewable energy projects: Quantitative evidence from France. Energy Economics. 88. 104754. 10.1016/j.eneco.2020.104754.
- Fleiss, E., Hatzl, S., Seebauer, S., & Posch, A. (2017). Money, not morale: The impact of desires and beliefs on private investment in photovoltaic citizen participation initiatives. Journal of Cleaner Production, 141, 920–927. https://doi.org/10.1016/j.jclepro.2016.09.123
- Kalkbrenner, B & Roosen, J. (2016); Citizens' willingness to participate in local renewable energy projects: The role of community and trust in Germany. Energy Research & Social Science. 60-70. <u>https://doi.org/10.1016/j.erss.2015.12.006</u>
- Marres, Noortje. (2012). (2012) Material Participation: Technology, the Environment and Everyday Publics (Basingstoke: Palgrave).
- Noppers, E. H., Keizer, K., Milovanovic, M., & Steg, L. (2016). The importance of instrumental, symbolic, and environmental attributes for the adoption of smart energy systems. Energy Policy, 98, 12–18. <u>https://doi.org/10.1016/j.enpol.2016.08.007</u>
- Cousse, J. (2021). Still in love with solar energy? Installation size, affect, and the social acceptance of renewable energy technologies. Renewable and Sustainable Energy
- Eurostat. (2024). House or flat owning or renting [European Union]. https://ec.europa.eu/eurostat/web/interactive-publications/housing-2024#how-we-live
- Hamann, K. R. S., Bertel, M. P., Ryszawska, B., Lurger, B., Szymański, P., Rozwadowska, M., Goedkoop, et al. (2023). An interdisciplinary understanding of energy citizenship: Integrating psychological, legal, and economic perspectives on a citizen-centred sustainable energy transition. Energy Research & Social Science, 97, 102959. https://doi.org/10.1016/j.erss.2023.102959
- Ryghaug, M., Skjølsvold, T. M., & Heidenreich, S. (2018). Creating energy citizenship through material participation. Social Studies of Science, 48(2), 283– 303.
- Peñaloza, D., Mata, É., Fransson, N., Fridén, H., Samperio, Á., Quijano, A., & Cuneo, A. (2022). Social and market acceptance of photovoltaic panels and heat pumps in Europe: A literature review and survey. Renewable and Sustainable Energy Reviews, 155, 111867. https://doi.org/10.1016/j.rser.2021.111867
- Mateo, C., Frías, P., Cossent, R., Sonvilla, P., & Barth, B. (2017). Overcoming the barriers that hamper a large-scale integration of solar photovoltaic power generation in European distribution grids. Solar Energy, 153, 574–583. https://doi.org/10.1016/j.solener.2017.06.008

Survey Study: PCA-Analysis

Theoretical category	Item	Communalities	Loadings factor 1	Loadings factor 2	Loadings factor 3	Loadings factor 4
Symbolism	Differentiating myself from others	0.74			0.84	
Symbolism	Showing who I am	0.78			0.85	
Symbolism	Saying something positive about myself	0.74			0.83	
Finance	Controlling where my money flows	0.56			0.34	0.64
Finance	Making a financial gain	0.77				0.86
Finance	Investing my money safely	0.76				0.85
Local value creation	Financing the implementation of a tangible project	0.61		0.75		
Local value creation	Having an impact together with others	0.61		0.74		
Local value creation	Supporting local actors	0.67		0.8		
Local value creation	Contributing to the sustainable development of my region	0.54	0.39	0.61		
Environment	Protecting the environment	0.74	0.84			
Environment	Fighting climate change	0.85	0.91			
Environment	Reducing CO ² emissions	0.71	0.83			

Note: N = 510; extraction method: principal component; varimax rotation; 4 components extracted, explained variance = 65%; Kaiser-Meyer Olkin = 0.83; Bartlett test of sphericity: p<0.01, Cronbach's α = 0.82

Survey Study: Hierarchical linear regression model

	Step I				Step II			
Variables	В	SE	β	p values	В	SE	β	p values
Constant	4.114	0.519		< 0.001***	4.115	0.488		< 0.001***
Age	- 0.010	0.004	- 0.133	0.011*	- 0.007	0.004	- 0.100	0.054
Civic Engagement ^a	0.044	0.060	0.033	0.467	0.029	0.056	0.022	0.604
Education ^b	0.113	0.124	0.044	0.366	0.059	0.117	0.023	0.615
Male ^c	0.081	0.122	0.031	0.508	0.103	0.117	0.040	0.379
Income ^b	0.163	0.084	0.098	0.053	0.171	0.079	0.102	0.031*
Tenant	0.117	0.116	0.055	0.314	0.046	0.109	0.022	0.673
Housing cooperative	- 0.638	0.243	- 0.123	0.009**	- 0.643	0.229	- 0.124	0.005**
Political orientation	- 0.079	0.032	- 0.117	0.015*	- 0.066	0.031	- 0.098	0.031*
Project developer1 ^d	- 0.521	0.127	- 0.220	< 0.001***	- 0.564	0.122	- 0.238	< 0.001***
Project developer2 ^d	- 0.278	0.167	- 0.084	0.097	- 0.150	0.160	- 0.045	0.347
Project developer4 ^d	- 0.144	0.217	- 0.032	0.508	- 0.196	0.210	- 0.043	0.352
Project developer5 ^d	0.048	0.148	0.017	0.749	- 0.007	0.140	- 0.003	0.957
Environmental attributes					0.172	0.047	0.159	< 0.001***
Financial attributes					0.210	0.051	0.195	< 0.001***
Local value creation attributes					0.227	0.045	0.216	< 0.001***
Symbolic attributes					0.117	0.048	0.109	0.015*
Model statistics	Model 1				Model 2			
R^2	0.111***				0.226***			
Adjusted R ²	0.087***				0.198***			
R ² change	0.075				0.113			
Fchange (df1, df2)	4.6 (12, 440)				16.13 (4, 43	36)		
	N=453				N=453			

Note: B = unstandardized regression coefficient, SE = standard error; β = standardized regression coefficient; *p < 0.05; **p < 0.01; ***p < 0.001; ***p < 0.001; a Coding: 1 = Never, 2 = Sometimes, 3 = Frequently; b Coding: 1 = Low, 2 = Medium, 3 = High; c Coding: 0 = female, 1 = male; d Dummy Coding: 0 = Other project developers, 1 = Project developer 1,2,4 or 5 (Reference category: Project developer 3); The political orientation scale is a continuous variable with higher values corresponding to stronger right-wing orientation (1 = left; 8 = right); Dependent variable: Willingness to participate in future CiFi PV projects

Experiment 1: Provider preferences for CiFi PV

Abbildung 12. Eignung eines Anbietertyps für GFP-Projekte. «Wie sehr stimmen Sie den folgenden Aussagen betreffend gemeinschaftlich finanzierten Solaranlagen zu? Ich finde es sinnvoll, wenn [Anbietertyp] solche Solarprojekte anbieten.» N = 808.

Experiment 2: Motivational framings

Figure 11: Estimated marginal means and standard deviation for the motivational frames and the perceived project attractiveness.

Experiment 2: Motivational framings

Frame	Main advantages	Motivational phrase	
Environment	Citizen-financed solar projects have a positive impact on the environment: they contribute to low-carbon and renewable energy production.	Do something for the environment and opt for renewable energy!	
Finance	Citizen-financed solar projects are attractive investments. They are low-risk and offer a higher return than a bank account.	Invest your money safely and profitably!	
Energy independence	Citizen-financed solar projects promote Switzerland's energy independence by reducing the need to import electricity from abroad.	Promote our energy independence!	
Local value creation	Citizen-financed solar projects promote local value creation: local installation companies benefit from orders, and roof owners benefit from cheap solar power.	Support local businesses and organizations!	
Civil society engagement	Citizen-financed solar projects send a political and economic signal: the Swiss population wants a faster expansion of renewable energies.	Set an example!	
Tangibility	Citizen-financed solar projects enable investment in specific projects: Where the money goes and what happens to it is clear from the outset.	Make a concrete project possible!	
Impact investment (combined frame)	• Citizen-financed solar projects are attractive investments. They are low-risk and offer a higher return than a bank account.	- Gain attractive returns - Enable a concrete project	
	• They enable investment in specific projects: Where the money goes and what happens to it is clear from the outset.	- Create ecological and local added value	
	• They are positive for the environment: they contribute to low-carbon and renewable energy production.		
	They promote local value creation: local installation companies benefit from orders and roof owners benefit from cheap solar power.		
Neutral (control group)	No text on main advantages => Directly to the offer	Your participation in a solar plant	

Experiment 2: Motivational framings

Figure 9: Estimated marginal means and standard deviation for the project characteristics and the perceived project attractiveness.

Swiss CiFi-Market is growing

Diverse project characteristics

Unit of offer by provider type

Market share of each payout model

Reward Lending Equity Donation Mix

EU directives and CiFi PV projects

Common features

- Grassroots-oriented
- Not locally bound
- Non-autonomous
- Photovoltaics only
- Open and voluntary participation
- Ownership and control by actors without a primary activity in the energy sector
- Primary purposes: social and environmental benefits

EU Internal Electricity Market Directive (2019/944)

EU Renewable Energy Directive (2018/2001)

Market-oriented CiFi PV projects: not regulated

Citizen energy community (CEC)

Grassroots-oriented Not locally bound Non-autonomous Technology-neutral

Renewable energy community (REC)

Grassroots-oriented Locally bound Autonomous Renewable technologies

Citizen-financed (CiFi) PV

Market-/grassroots-oriented Locally bound/not bound Autonomous/non-autonomous Photovoltaics only

Common features

- Grassroots-oriented
- Locally bound
- Autonomous
- Photovoltaics only
- Open and voluntary participation
- Ownership and control by actors without a primary activity in the energy sector
- Primary purposes: social and environmental benefits

Motivational attributes scale

Original scale by Noppers et al., 2016

Evaluation of attributes of the sustainable innovation

Confirmatory PCA, Cronbach's alpha = 0.82

Phenomenological approach

→

Greated by PEBIA from Noun Project

- $\overset{\bullet}{\frown}_{\leftarrow}$ Growth primarily in small-scale PV installations
 - Large-scale PV less socially accepted
 - Large upfront costs
 - Limited accessibility for tenants

Key implications for policy

Created by Fajar Studio from Noun Project

- Include market-oriented CiFi PV
- Clarify policy goals: Energy citizenship as an actionable concept?

- Improve access to data on rooftop/surface availability
 - Explicit CiFi PV to render it visible
 - Assess the impact of the recently adopted Federal Act

Key actors: Focus on CiFi PV participation

Project developer

Market-oriented projects: utilities, companies Grassroots projects: cooperatives, associations Either one: municipalities, cities

Rooftop or surface owner

Can be the same as the developer

CiFi PV participants

Co-financing individuals

What drives participation in CiFi PV projects?

Energy community lens

- Individuals as active participants
- Community level as the sphere of action
- Strong focus on environmental goals and motivations

Mainstreaming potential

• Limited

Main motivational driver:

Environmental concern

Fragmentary understanding

Investment behavior lens

- Focus mainly on market-oriented projects
- Individual as passive consumers
- Household level as the sphere of action
- Strong focus on economic goals and financial motivations

Mainstreaming potential

Considerable

Main motivational drivers:

Financial or environmental concerns

UNLOCK-PV Research project

Unlock the potential of CiFi PV to accelerate the energy transition

- Expansion potential, barriers & drivers, participation motivations
- Multi-perspective: providers, early adopters and potential adopters
- From 2020 to 2023, EWG project financed by SFOE
- ZHAW & Econcept

Why is the Swiss case interesting?

- Affluent population
- Niche market with expanding offers
- Various types of CiFi PV offers
- Participatory democracy

More than money: local & environmental impact

Motivations related to CiFi PV participation

Example: «Through my CiFi PV participation, I support local actors.» - 1 Completely disagree to 5 Completely agree

Limited dissemination by early adopters

- Investment behaviour is a private matter ٠
- Stereotypically "left-ish", but early adopters form the entire political spectrum •
- Few recommendations, but high willingness to re-invest •

Willigness to re-invest into CiFi PV

Comparison with Swiss Household Energy Demand Survey data

In comparison with the Swiss average citizen (SHEDS 2018/2021), early adopters are:

- + politicially slightly more left-leaning
- + higher biospheric and lower hedonic values
- + above average income
- + more engaged in associations
- + ... specifically in environmental, local or political associations

Three types of early adopters

	The local ecologists	The indifferent	The allround far	IS
	n = 184	n = 105	n = 221	
Age	58.6 b	55.2 b	47.7 a	30.8 (2,503) ***
Male°	72.3 a	77.7 ab	81.3 b	χ2 (2) = 4.6
Cooperative°	4.9 a	5.7 a	6.3 a	χ2 (2) = 0.4
Tenant°	39.7 a	36.2 a	50.2 b	χ2 (2) = 7.4 *
Owner°	55.4 a	58.1 a	43.4 b	χ2 (2) = 8.6 *
Monthly income	4.5 a	4.6 a	4.6 a	0.5 (2, 464)
Level of education	6.1 ab	5.8 a	6.2 b	3.7 (2,498) *
Political orientation	3.3 a	3.8 b	3.6 ab	3.6 (2, 501) *
Recommendation of offer	2.5 b	2.3 b	2.8 a	8.7 (2, 507) ***
Readiness to reinvest	4.1 a	3.4 b	4.3 c	24.2 (2, 507) ***
Altruistic	4.2 b	3.9 a	4.2 b	14.0 (2, 507) ***
Egoistic	2.3 b	2.4 b	2.7 a	19.5 (2, 507) ***
Biospheric	4.6 a	4.1 b	4.5 c	24.5 (2, 507) ***
Hedonic	3.4 b	3.4 b	3.7 a	11.7 (2, 507) ***