Spatial strategies for siting variable renewable energy sources to ensure weather resilience in Switzerland

Giacomo Rubino University of Geneva

Co-authors: Collin Killenberger, Jan-Philipp Sasse, Nik Zielonka, Xin Wen, Zongfei Wang, Evelina Trutnevyte

ENERGY RESEARCH TALKS DISENTIS 2025

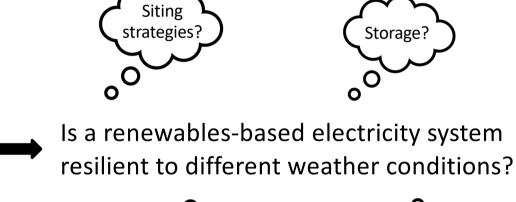
31st January 2025 Disentis, Switzerland

1

RENEWABLE ENERGY SYSTEMS Giacomo Rubino, 31st January 2025

Resilience of an electricity system with a high penetration of weather-dependent renewables

Fully weather-dependent:


- Solar PV
- Wind power

Partially weather-dependent:

• Hydropower

Not dependent on weather:

- Biomass
- Geothermal

RENEWABLE ENERGY SYSTEMS Giacomo Rubino, 31st January 2025

Background: weather resilience of renewable electricity systems

Two approaches:

• Designing a system which is resilient to decades of historical weather patterns Zeyringer et al., 2018; Grochowicz et al., 2023; Killenberger et al., 2024

Or:

Verify the weather reliability of an electricity system with a pre-defined capacity layout
 Collins et al., 2018; Grochowicz et al., 2024; Gotske et al., 2024

RESEARCH GAP 1:

• Weather modelling at sub-national resolution (resilience is first scope of national policy, and higher resolution captures the role of weather impacts more precisely)

Background: weather resilience depends also on the location of variable-renewable energy systems (VRES) plants

- Siting by **cost-effectiveness**
- Tradeoffs between cost-effectiveness and regional equity
- Represent the **current trends** in models
- Wisely allocated VRES plants can counter-balance weather patterns

Grams et al., 2017

Thormeyer et al., 2020

 Broad study on how different sitings of renewables technologies affect weather resilience (i.e. siting by cost-efficiency, by equity, by allowing continuation of current trends

Switzerland as a case study

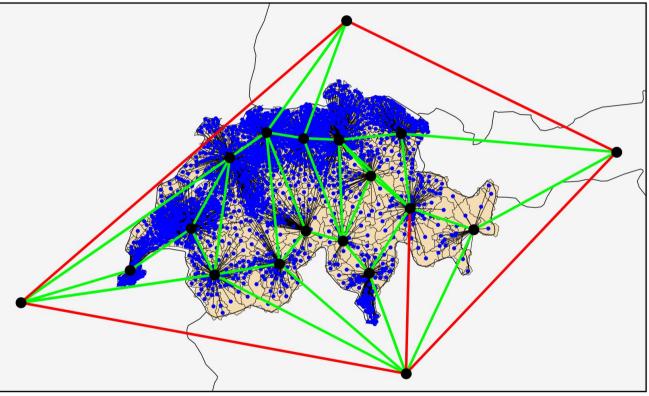
- Spatial studies indicate uneven distributions of PV and heat pumps installations across the country (current trends) Zielonka et al., 2024; Zhang et al., 2023
- Current trends do not coincide with **cost-effective** nor with **even siting** of renewables.

Sasse et al., 2019

- Swiss national referendum (June 2024): implement a target of 35 TWh/year generation from non-hydro renewables by 2035.
 https://www.strom.ch/fr/grands-axes/loi-pour-lelectricite-mantelerlass
- Small country: facilitates sub-national modelling at high resolution
- Peculiar topology (mountains, valleys, plateaus), and at the center of European grid

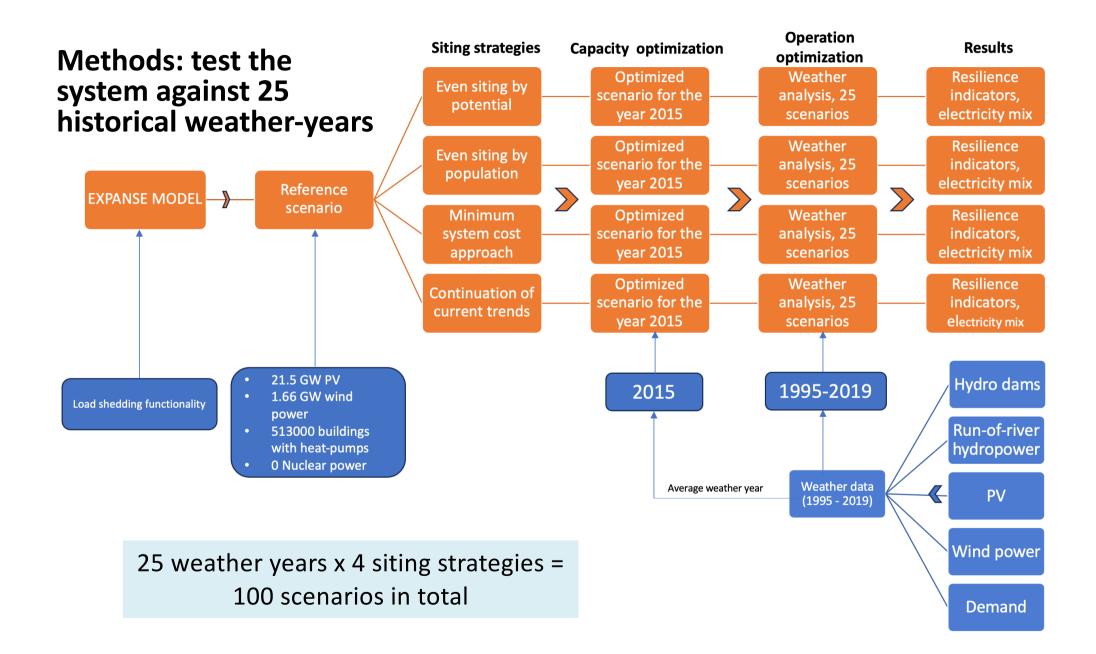
RESEARCH QUESTION:

• (i) How the implementation of the target of 35 TWh/year of renewable electricity and (ii) VRES siting strategies perform in terms of weather resilience?



Methods: EXPANSE electricity model

- 5 countries, Switzerland + neighbouring countries
- Spatial resolution of 2136 Swiss municipalities
- 3 hours temporal resolution, year 2035
- It models generation, transmission, storage and demand of electricity
- Minimisation of total system cost



Sasse and Trutnevyte 2019; Sasse and Trutnevyte 2020; Sasse and Trutnevyte 2023 (a), (b)

RENEWABLE ENERGY SYSTEMS Giacomo Rubino, 31st January 2025

Methods: Siting strategies		Spatial resolution of 2136 S		
Installed capacity	Solar PV 21.5 GW	Wind power 1.66 GW	Heat pumps 513000 buildings	KES
Even siting by population	Proportional to population	Proportional to population	Proportional to population	
Even siting by technical potential	Proportional to technical potential	Proportional to technical potential	Proportional to technical potential	
Minimum system cost approach	Minimises total system costs	Minimises total system costs	Proportional to technical potential	
Expected siting (continuation of current trends)	Probabilistic projections based on current trends*	Spillover effect	Probabilistic projections based on current trends*	

* Zielonka et al., PNAS Nexus 2 (2023)

RENEWABLE ENERGY SYSTEMS

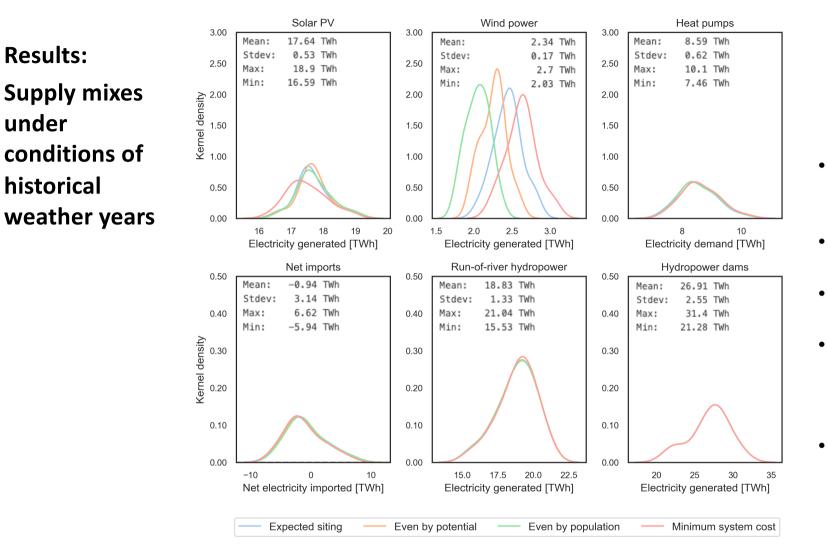
Methods: Weather data collection

- Switzerland (municipality resolution)
- Neighbouring countries (country average value)
- 25 historical years: 1995-2019

Technology	Source (Switzerland)	Source (Neighboring countries)
Solar PV	Renewables ninja https://www.renewables.ninja	Renewables ninja
Wind power	Renewables ninja	Renewables ninja
Run-of-river	Dujardin et al, Calliope model https://www.callio.pe	Calliope model, IEA*
Hydropower dams	Linear regression	Calliope model, IEA*
Electricity demand (heat-pumps)	Developed a bottom- up model (temperature from renewables ninja)	Entso-E**

* https://www.iea.org/data-and-statistics/data-tools/hydropower-data-explorer

**https://2022.entsos-tyndp-scenarios.eu/download/

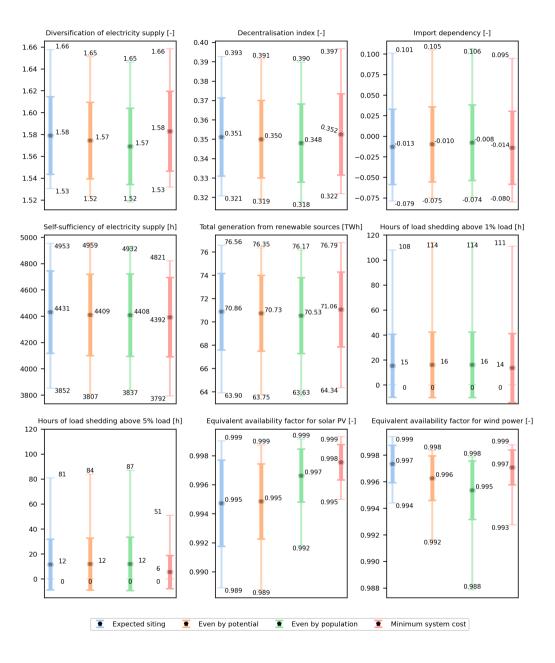


RES

RENEWABLE ENERGY SYSTEMS Giacomo Rubino, 31st January 2025

Methods: resilience indicators

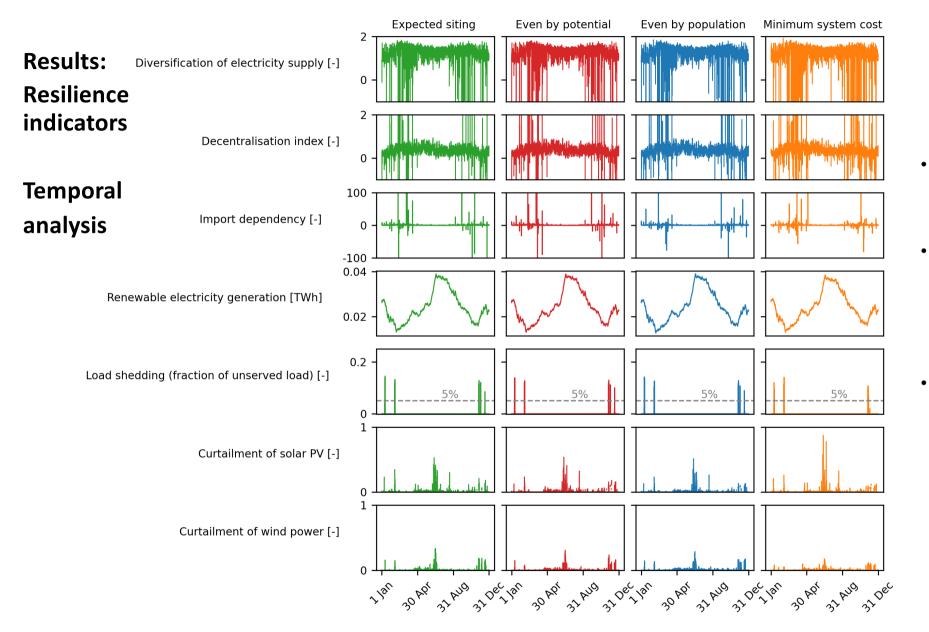
Resilience indicator	Definition
Diversification of electricity supply [-]	Shannon index $\sum_{i=1}^{n} p \cdot \ln(p)$, where p is the share of electricity generated by each technology
Decentralization index [-]	Ratio of the electricity generated by decentralised sources to total domestic electricity generation
Import dependency [-]	Ratio of net electricity imports to total domestic electricity generation
Self-sufficient electricity supply [h]	Number of hours per year in which domestic supply is equal or higher than the electricity demand
Total generation from renewable sources [TWh]	Electricity generation from solar PV, biomass and waste, wind power, run-of-river hydropower, and hydro dams.
Hours of load shedding above 1% load [h]	Number of hours per year in which more than 1% of the demand load is not supplied
Hours of load shedding above 5% load [h]	Number of hours per year in which more than 5% of the demand load is not supplied
Equivalent availability factor for solar PV [-]	electricity produced electricity produced + curtailed
Equivalent availability factor for wind power [-]	electricity produced electricity produced + curtailed


- Solar PV and wind production very robust to weather
- Heat pump demand range ≃2.5 TWh
- **Net imports** range $\simeq 12$ TWh
- Hydropower has a larger variance than PV and wind
- Different sitings affect
 solar PV and wind
 power generation

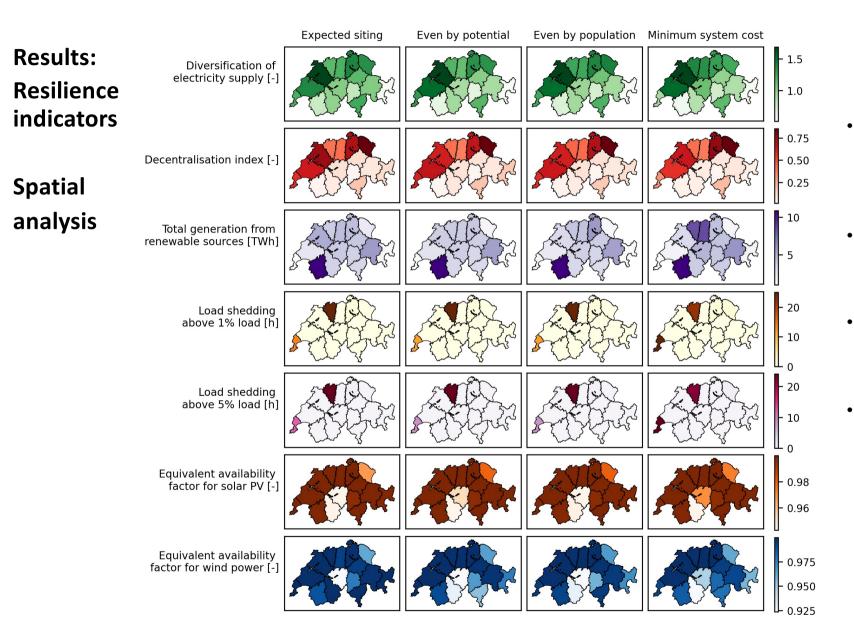
RENEWABLE ENERGY SYSTEMS

Giacomo Rubino, 31st January 2025

Results: Resilience indicators



- Share of *decentralisation index* ranges from about 32% to 39%
- Expected siting strategy: scores highest for self-sufficient supply
- Hours of load shedding (>5% load): "Cost-optimal" scores lowest
- Cost-optimal siting strategy is the most robust in terms of equivalent availability factor
- Minimum system cost siting strategy: consistent, albeit minor, advantages for weather resilience


Results: Comparative assessment of the resilience indicators across 25 weather years

	Diversification of electricity supply	Decentralisation index	Import dependency	Self-sufficiency of electricity supply	Total generation from renewable sources	Hours of Ioad shedding above 1% Ioad	Hours of Ioad shedding above 5% load	Equivalent availability factor for solar PV	Equivalent availability factor for wind power
1995	0.21	0.26	0.59	0.62	0.51	1	1	0.83	0.86
1996	0.41	0.49	0.3	0.35	0.21	1	1	0.96	0.89
1997	0.22	0.21	0.68	0.62	0.58	0.86	1	0.8	0.8
1998	0.21	0.31	0.56	0.6	0.48	1	1	1	0.95
1999	0.07	0.11	0.79	0.76	0.72	1	1	0.75	0.81
2000	0.06	0.17	0.94	0.94	0.88	1	1	0.96	0.93
2001	0.06	0.07	1	0.89	1	1	1	0.52	0.8
2002	0.34	0.36	0.68	0.64	0.57	1	1	0.67	0.85
2003	0.71	0.73	0.55	0.42	0.46	0.97	1	0.26	0.71
2004	0.34	0.33	0.68	0.7	0.63	0.68	0.65	0.81	0.76
2005	0.97	1	0	0	0	0.97	1	0.34	0.34
2006	0.78	0.73	0.33	0.15	0.25	1	1	0.51	0.79
2007	0.5	0.51	0.72	0.94	0.62	0.92	0.88	0.54	0.44
2008	0.15	0.16	0.83	0.92	0.79	0.95	1	0.33	0.59
2009	0.44	0.41	0.71	0.5	0.64	0.41	0.47	0.15	0.55
2010	0.43	0.3	0.47	0.45	0.47	0	0	0.49	0.68
2011	0.7	0.85	0.48	0.3	0.28	0.78	1	0.6	0.69
2012	0.43	0.35	0.74	0.68	0.67	0.43	0.29	0	0.56
2013	0.15	0	0.82	0.71	0.81	1	1	0.48	0.65
2014	0	0.07	0.97	1	0.83	1	1	0.87	0.93
2015	0.48	0.53	0.73	0.83	0.58	1	1	0.57	0.73
2016	0.82	0.69	0.28	0.09	0.14	1	1	0.55	0.79
2017	1	0.94	0.15	0.05	0.06	0.97	1	0.11	0
2018	0.43	0.41	0.83	0.62	0.65	1	1	0.82	1
2019	0.19	0.22	0.75	0.78	0.63	1	1	0.86	0.82

- Weather-year 2010: highest score for "hours of load shedding", low score of renewables generation, and high score in import dependency
- Weather-year 2017: highest generation from biomass and gas, low hydropower generation
- Weather year 2001 and 2005: interplay between import and hydropower (when one is maximum, the other is minimum)

- Renewables
 generation peaks
 during summer
- Import dependency and load shedding increase during winter
- Most curtailment happens during Summer

- Northen and Western Switzerland constibute to diversification and decentralisation
- Renewable electricity generation is rather uniform
- Load shedding happens in regions with no hydropower
- Most **curtailment** spatially localized in two regions in the south and on region in the Northeast

Conclusions

- The Swiss system that relies fully or almost fully on VRES is techno-economically operational and resilient to weather variations
- Solar PV and wind generation is robust to weather variations
- Weather variations were found to particularly affect electricity demand for heat-pumps and availability for hydropower, indirectly influencing electricity import and export
- The siting strategies analysed perform very similarly in terms of resilience: location of VRES is not a major issue for weather resilience
- Technology siting decision should be guided by other technical, economic and environmental arguments

Thank you for your attention!

Giacomo Rubino

University of Geneva

Co-authors: Collin Killenberger, Jan-Philipp Sasse, Nik Zielonka, Xin Wen, Zongfei Wang, Evelina Trutnevyte

giacomo.rubino@unige.ch

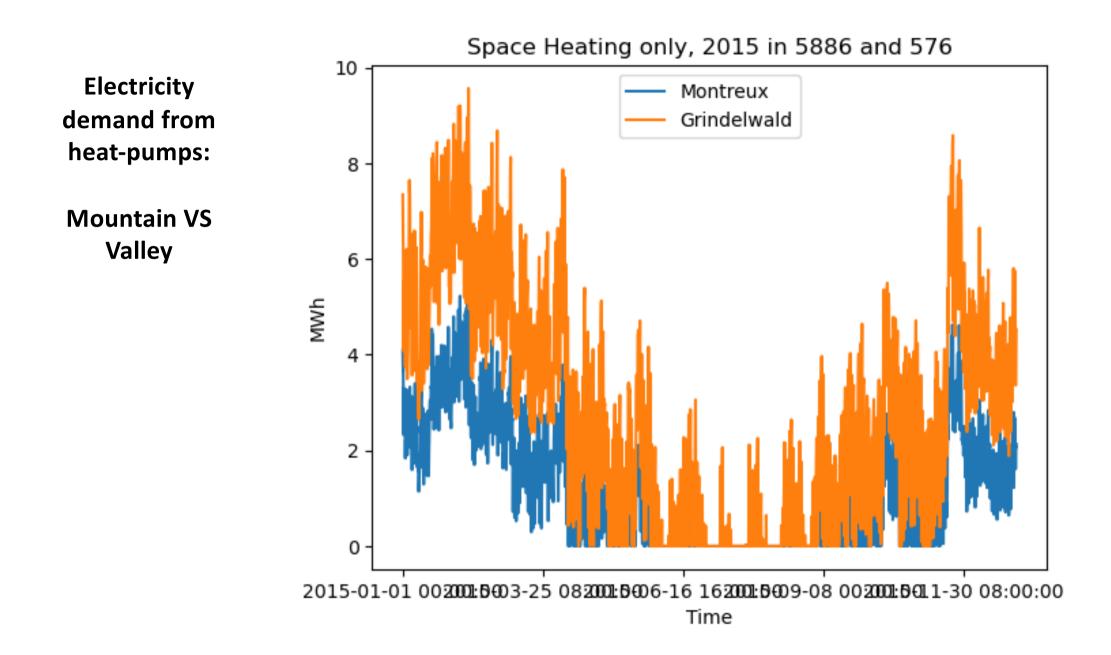
sweet swiss energy research for the energy transition

SURE

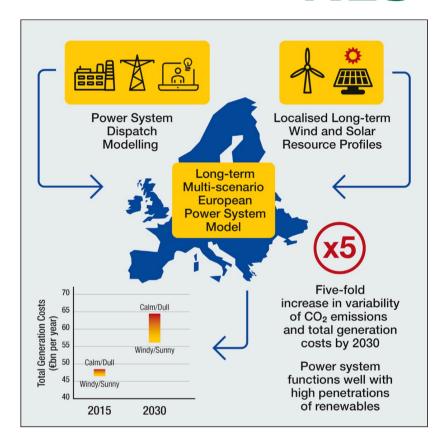
RENEWABLE ENERGY SYSTEMS Giacomo Rubino, 31st January 2025

Backup slides

RENEWABLE ENERGY SYSTEMS


Limitations / further research needs

- Historical weather conditions VS future impacts of climate change
- Future electricity demand and flexibility from heat-pumps and electric vehicles
- Alpine PV
- More wind power potential exploitable
- H2 production at scale
- Switzerland has high hydropower availability and grid connection with neighboring countries: performance of siting strategies in other countries?

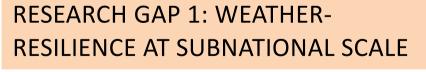


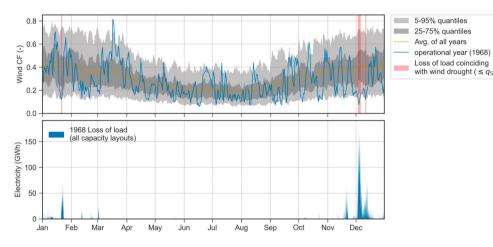
Literature review: Impacts of inter-annual wind and solar variations on the European power system

Joule, 2018, S. Collins et al

- European study
- Electricity market model (PLEXOS)
- **Spatial-explicit** PV and wind profiles for 30 historical years
- Ambitious decarbonisation 2030 targets lead to much greater influence of **weather patterns**
- Import and storage: "weather insurance" products

RENEWABLE ENERGY SYSTEMS




Literature review : Designing a sector-coupled European energy system robust to 60 years of historical weather data

Nature Communications, 2024, E. Gotske, F. Neumann, M. Victoria

- European Study
- Energy system model (pyPSA)
- 62 capacity layouts tested against 62 weather years (combines approaches)
- Extreme weather-years drive investments in robustness measures
- Unserved energy during winter periods (wind drougth)

RENEWABLE ENERGY SYSTEMS

RES

Literature review: siting of renewables is key to counterbalance weather variations

- Different **weather-patterns** can differently impact optimal spatial allocations (Zeyringer, 2018, Nature Energy)
- Need accurate modelling of PV and Wind **location** and production (Simoes 2017)
- Interconnection of geographically disperse wind or solar PV farms
- Germany: interplay between wind farms in the North and solar PV in the South

Research questions (extra)

- 1) What is the impact of the expected / optimal / even spatial allocation of PV, wind, and HPs on the resilience of the Swiss electricity system, measured with 9 resilience indicators, and considering 25 historical weather-years?
- 2) What are the implications for the electricity generated?
- 3) Are there meaningful spatial or temporal patterns regarding points 1 and 2 ?

Methods: EXPANSE model

Objective function: capacity expansion + dispatchment

$$f_{\text{cost}} = \sum_{r,c} C_{r,c} G_{r,c} + \sum_{n,c} C_{n,c} H_{n,c} + \sum_{l} C_{l} F_{l} + \sum_{t} w_{t} \left[\sum_{r,c} O_{r,c,t} g_{r,c,t} + \sum_{n,c} O_{n,c,t} h_{n,c,t}^{\text{discharge}} + \sum_{l} O_{l,t} f_{l,t}^{+} \right]$$

Constraints

• Supply = demand in all grid nodes

- 1

- Kirchoff voltage law
- Powerplants operation (e.g. minimum baseload power, weather dependency)
- GHG emissions and renewable electricity targets

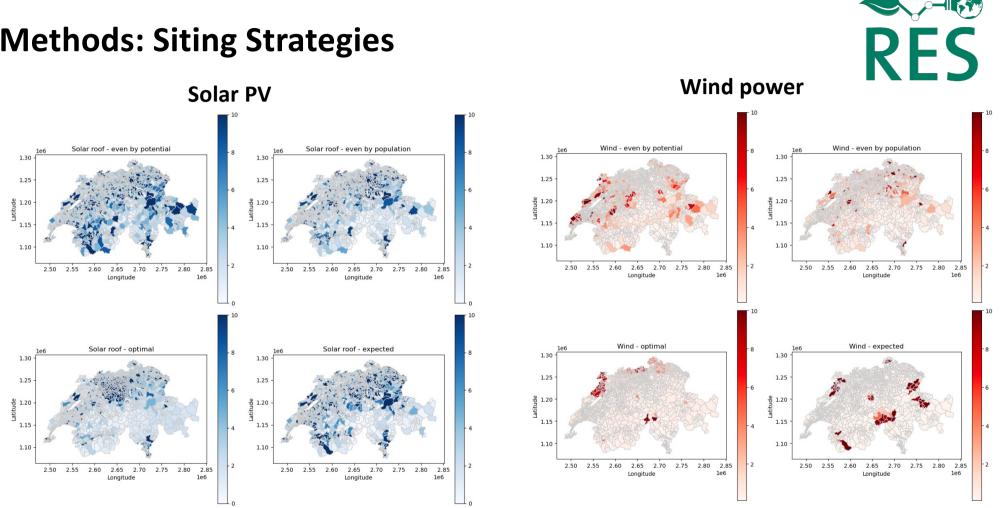
•

...

Methods: Heat-Pump electricity demand

 $HP \ electr \ demand_{w-year}(s,t) = \left(\frac{1}{COP}\right) * (Hot \ water(s) + Space \ heating_{w-year}(s,t))$

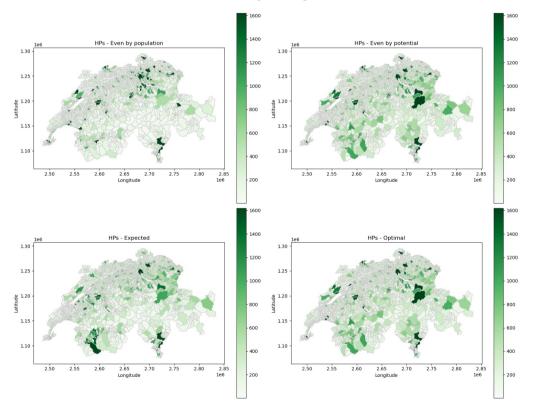
Hot water(s) = 5347.615 MJ/person * number of people in 2035 in municipality(s) * used potential [%] expected/even (s)


Space heating_{w-year}(s,t) = $q * NumHP_{expected/even}(s) * HDD_{w-year}(s,t)$

 $q = \frac{\text{Heat consumed by heat pump in 2019/year}}{\text{number of HP in 2019 } * \sum_{t} avg(HDD(s)) \text{ in 2019}} \approx 0.001 \ \left[\frac{MWh/year}{1 \text{ HP * 1HDD}}\right]$

s = 2136 municipalities HDD threshold: $12^{\circ}C$ t = 8760 time slices COP = 3.5

RENEWABLE ENERGY SYSTEMS


Methods: Siting Strategies

RENEWABLE ENERGY SYSTEMS

UNIVERSITÉ DE GENÈVE

Methods: Siting Strategies

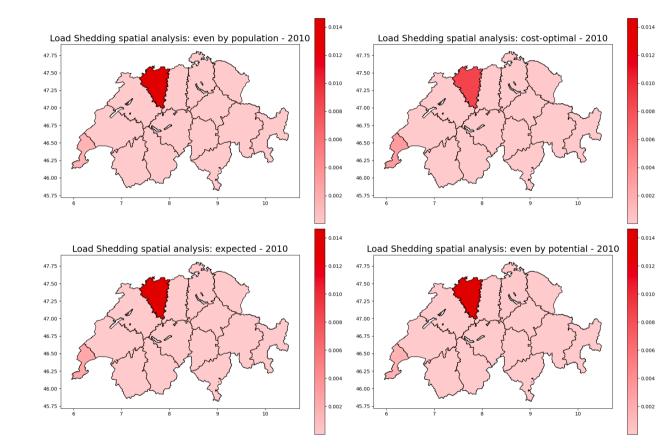
Heat-pumps

RENEWABLE ENERGY SYSTEMS

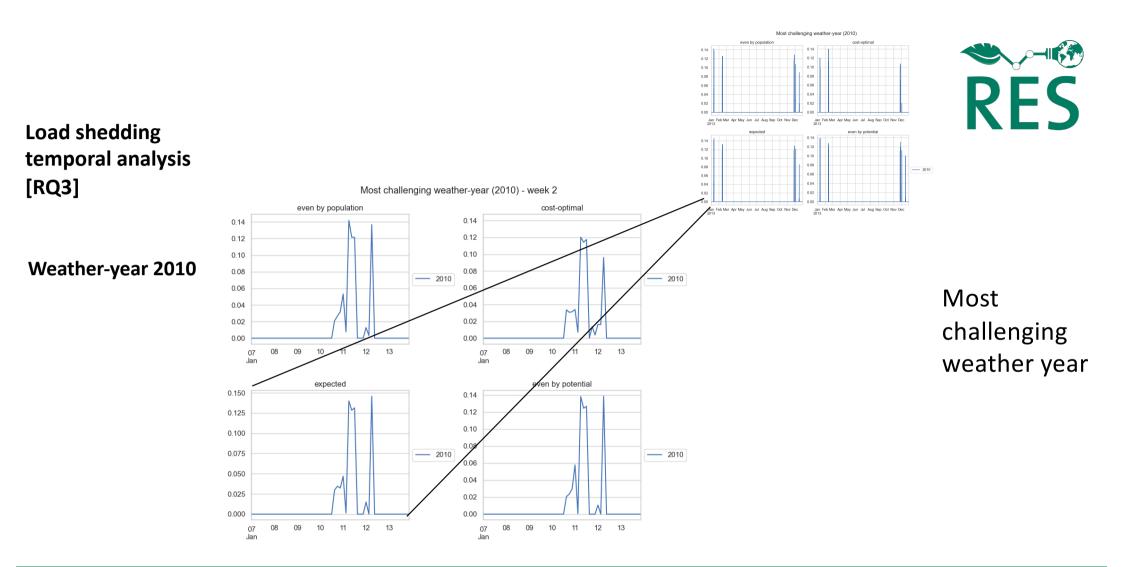
Methods: capacity layout

- International HV lines, increase from 52 GW (current value) to about 62.4 GW
- Domestic HV lines, increase from 97.5 GW to 106.7 GW
- No investment on H2 and grid-scale battery
- 2.725 GW Biomass installed in Switzerland
- Neighboring countries meet the targets of CO2 emissions and renewables production

		over hverenvlation	anat antimal	avera at a d	aven humatantial
	1005	even by population	cost-optimal	expected	even by potential
	1995	0	0	0	0
	1996	0	0	0	0
	1997	12	0	12	12
	1998	0	0	0	0
Resilience indicators	1999	0	0	0	0
[RQ1]	2000	0	0	0	0
• • •	2001	0	0	0	0
	2002	0	0	0	0
Hours of lost load	2003	12	0	9	9
(minimum 5% case)	2004	18	18	18	18
	2005	0	0	0	0
	2006	3	0	3	3
	2007	3	6	0	3
	2008	33	0	27	30
	2009	33	27	33	36
Most challenging weather:	2010	87	51	81	84
	2011	6	0	9	6
	2012	60	36	60	60
	2013	0	0	3	3
	2014	0	0	0	0
	2015	3	0	3	3
	2016	21	0	21	18
	2017	9	0	9	12
	2018	0	0	0	0
	2019	0	0	0	0
	mean	12.0	5.52	11.52	11.88
	stdev	21.35	13.27	20.25	20.83

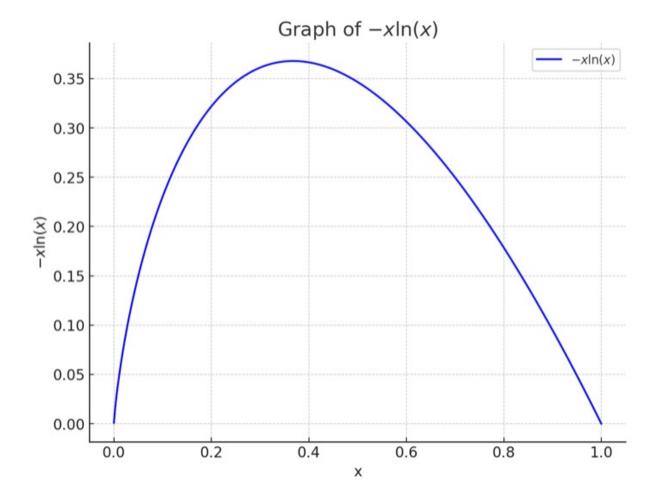


RENEWABLE ENERGY SYSTEMS


Results: spatial analysis of "Load shedding" indicator (5% threshold)

Regions with no hydro storage potential

RENEWABLE ENERGY SYSTEMS Giacomo Rubino, 1st July 2024



RENEWABLE ENERGY SYSTEMS

Shannon Index

