

Economic assessment of bottom-up energy system model results

Coupling SES-ETH with GemEne

Florian Landis florian.landis@zhaw.ch @florian-landis.bsky.social

ZHAW Center for Energy and the Environment

30 January 2025

Background

- Computable General Equilibrium (CGE) models allow for economy-wide analysis of policy issues but are ill-suited to predict consequences of fundamental transformation of the energy sector.
 - CES framework for production functions not easily amenable to full phase-out of production inputs like fossil fuels
 - Good accounting of values but inconsistent accounting of physical quantities
- Energy system models give more credible representation of technological substitutability, but lack economy-wide perspective.
- Model coupling allows to draw on strengths of both model types.
- Nexus-e: provide tight coupling link between electricity investment and electricity market modeling and CGE model (Gjorgiev et al. 2022)¹
- Goal: work towards a tight model link between energy system modeling and CGE model.

¹Blazhe Gjorgiev et al. (2022). "Nexus-e: a platform of interfaced high-resolution models for energy-economic assessments of future electricity systems". In: *Applied Energy* 307. DOI: https://doi.org/10.1016/j.apenergy.2021.118193.

Method

Attempt a model-coupling between

- SES-ETH (Marcucci, Guidati and Giardini 2021)²
 - energy system model
 - minimizes total cost given
 - demand for energy services
 - constraints on emissions
- CGE model of Switzerland (GemEne)
 - General equilibrium
 - prices such that markets are balanced
 - activity levels such that zero-profits hold
 - Production functions allow for substitution of inputs when prices change.
 - Firms participating in markets minimize production costs → demand functions of firms

²Adriana Marcucci, Gianfranco Guidati and Domenico Giardini (2021). Swiss Energy Scope – ETH: Swiss Energy Scope with hourly resolution. Report. Accepted: 2022-04-05T05:08:47Z. ETH Zurich. poi: 10.3929/ethz-b-000540917.

Data: Structure of Swiss economy

Input-Output-Table of Swiss economy:

- "Energiebezogene Differenzierung der Input-Output-Tabelle 2014" von aramis Projektdatenbank³
- 77 economic sectors; sectors of particular interest:
 - (23) Manufacture of other non-metallic mineral products
 - (35a–35h) diverse sources of electricity generation
 - (35i) Electricity distribution and trade
 - (49a, 49d, 49e) Passenger land transport
 - (49b) Freight rail transport
 - (49f) Freight transport by road
 - (35j) Steam and hot water supply
 - (38b) Heat from waste incineration
- Energy demand for 22 energy commodities by sector in TJ

³https://www.aramis.admin.ch/Grunddaten/?ProjectID=43188

Data: Energy sector according to SES-ETH

SES-ETH:

- Rich set of technologies and energy goods
- CO₂ accounting
- Minimize syste cost s.t. fix energy demand and climate target are met

Small-scale version in GemEne:

- 7 final energy goods: heat, electricity, four modes of transport, cement
- 4 inputs: investments (capital), biomass, natural gas, carbon transportation and storage services, electricity imports
- 12 activities: cement, 4 modes of transport, electricity generation, combined-heat-and-power, heat, H₂, biomass, gas, CCS
- 4 grids: electricity, heat, H₂, gas
- activities (and grids) integrate in CGE as fixed-factor production functions

Correspondance of energy activities and economic sectors

	ESM energy good	CGE sector
Transport	Individual transport	Private transport
	Public transport	(49a, 49d, 49e)Passenger land transport
	Freight road transport	(49f) Freight transport by road
	Freight rail transport	(49b) Freight rail transport
Electricity	Electricity	(35a–35h) diverse sources of electricity generation
Cement	Cement	(23) Manufacture of other non-metallic mineral products
Heat	Heat	(35j, 38b) heat supply
		& all sectors with heating fuel inputs

Forward calibration: BaU energy sector

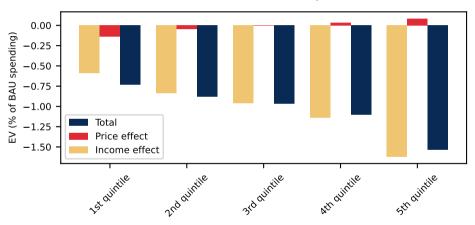
	Heat	H2	Public Transport	Private Transport	Road freight transpor	Rail freight transport	CHP	Electricity generation	Biomass	Natural gas	Cement	ccs
v_cr v_ng v_el v_bm v_cs	-2.78		-0.47	-1.99	-3.18		-0.37 -0.00	-5.45 -0.00	-0.33	-0.44 -3.11		
e_h2 e_bm e_ng e_cc	-0.12 -0.52		-0.03	-0.37	-0.37		-0.21 -0.90	-1.35	0.33	3.55		
f_ht f_cem f_ele f_frd f_frl	4.88 -1.46		-0.28	-1.26	-0.08 3.64	-0.08 0.08	0.97	6.81			-0.17 0.21 -0.04	
f_tpr f_tpb			0.78	3.63								

Counterfactual: Carbon net-negative energy sector

	Heat	H2	Public Transport	Private Transport	Road freight transpor	Rail freight transport	CHP	Electricity generation	Biomass	Natural gas	Cement	ccs
v_cr v_ng	-4.98	-0.36	-0.47	-1.99	-3.18		-0.23	-7.08		-0.23 -1.14		-0.17
v_el v_bm							-0.00	-0.00	-1.49			
v_cs												-2.85
e_h2	-0.32	1.31	-0.04	-0.46	-0.50		0.22		0.50			
e_bm e_ng	-0.10 -0.26	-0.23 -0.29					-0.23	-0.70	0.56	1.25		
e_cc	-0.47	-0.05					-0.75	-0.58		1.25	-0.32	2.17
f_ht f_cem	5.61						0.51				-0.17 0.21	-0.27
f_ele f_frd	-1.50	-0.05	-0.28	-1.26	-0.08 3.64	-0.08	0.14	7.42			-0.04	-0.16
f_frl					3.04	0.08						
f_tpr				3.63								
f_tpb			0.78									

Findings: Demand response

		SES	S-ETH	GemEne		
		BAU Decarb		BAU	Decarb	
Supply (bn CHF)	Heat	5.68	"	5.68	4.43	
	Cement	0.21	"	0.21	0.19	
	Electricity	4.10	"	4.10	3.17	
	Freight road	3.64	"	3.64	3.57	
	Freight rail	0.08	"	0.08	0.08	
	Persons road	3.63	"	3.63	3.55	
	Persons rail	0.78	"	0.78	0.76	
ES Cost (bn CHF)	Total	18.16	24.21	18.15	20.66	


Findings: Macroeconomic results

		SES-ETH		Gen	nEne
		BAU	Decarb	BAU	Decarb
ES Cost	Total (bn CHF) Change (bn CHF)	18.16	24.21 6.05	18.15	20.66 2.50
GDP	Total (bn CHF) Change (bn CHF) Change (%)			975.34	967.59 -7.75 -0.79
Real consumption	Total (bn CHF) Change (bn CHF) Change (%)			501.37	495.68 -5.69 -1.13
Consumer price Wages Capital rents	Change (%) Change (%) Change (%)				-0.01 -0.92 -0.60

Consumer welfare across income quintiles

Conclusion and Outlook

Achievements and insights:

- 1-to-1 integration of energy system modelling results in CGE analysis
- Demand response in CGE reduces energy system costs
- Allows for an analysis of which sectors and households are affected by more expensive energy
- Analysis corresponds to "regulation by technology standards"

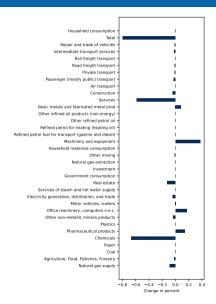
Caveats and outlook:

- Policies (like subsidies or carbon prices) or targets (like emissions caps) not in CGE model, but need to be reflected in energy system model
- Effects of demand response should be reassessed in energy system model:
 - Loop between models for a "tight" model coupling link.
 - Current demand response (behavior of stylistic ES model) is based on cost structures but sees no carbon constraint.

Thank you for your attention

Florian Landis

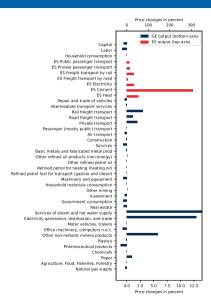
florian.landis@zhaw.ch


@florian-landis.bsky.social

ZHAW Center for Energy and the Environment

30 January 2025

Sector results: GDP composition



Sectoral energy demand: Efficiency v. activity levels

